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Impedances of an Elliptic Waveguide
(For the .H, Mode)’

G. R. VALENZUELA{, MEMBER, IRE

Summary—The power-voltage, power-current and voltage-cur-
rent impedances for the elliptical waveguide for the fundamental
mode (. H; mode) are obtained by two different methods.

The first method consists of using the exact fields inside a per-
fectly conducting elliptical pipe. Numerical results were obtained by
numerical integration of the integrals involving Mathieu functions
by the Gaussian Quadratures method by a digital computer.

In the second method approximate fields which satisfy the bound-
ary conditions were used. By this approximate method, actual ex-
pressions for the impedances are obtained as a function of minor to
major diameter ratio with no need of numerical integration.

The actual expressions for the impedance obtained by the ap-
proximate method give the impedance for elliptical waveguide within
six per cent. On the basis of comparison with the exact numerical
solution the expressions for the approximate impedance give the
impedance of elliptical waveguide within three per cent if they are
scaled by 1.03.

INTRODUCTION

HU! in 1938 obtained numerical results for the

exact cutoff wavelength for several modes in el-

liptical waveguides. He also obtained numerical
results for the attenuation in elliptical waveguide.

* Received by the PGMTT, January 15, 1960; revised manuscript
received, March 31, 1960. This research was supported by the U. S.
Air Force through the Wright Air Dev. Div. of the Air Res. and Dev.
Command. The early work reported herein was supported by the
Dept. of the Navy, Bureau of Ordnance, at the Applied Physics
Lab., The Johns Hopkins University.

+ The Johns Hopkins Radiation Lab., Baltimore, Md.

1 L. J. Chu, “Electromagnetic waves in elliptic hollow pipes of
metal,” J. Appl. Phys., vol. 9, pp. 583-591; September, 1938.

Kihara® published a paper in 1947 using the varia-
tional method to determine the propagation constant
of hollow pipes and cavities. Kihara was able to obtain
the propagation constant of an elliptical waveguide
within one per cent, in the first approximation, using
trial fields.

In 1958 Harrowell® obtained the impedance of ellip-
tical waveguide by using an approximate method. He
showed that the magnetic field lines inside a circular
waveguide were approximately ellipses. Therefore, he
was able to introduce conducting ellipses without dis-
turbing the fields. Harrowell did not mention within
what degree of accuracy his impedances would com-
pare with the exact value.

Harrowell's voltage-current impedance agrees per-
fectly with our exact impedance, but his impedances in-
volving power differ from our exact values; this differ-
ence is greater for eccentricities close to unity.*

* T. Kihara, “Approximate methods regarding electromagnetic
waves in hollow pipes and cavities,” Phys. Soc. Japan, vol. 2, pp.
65-70; 1947,

3 R. V. Harrowell, “An approximate theory for determining the
characteristic impedance of elliptic waveguides,” J. of Electronics
and Control, vol. 5, pp. 289-299; October, 1958.

4 In private correspondence we pointed out to R. V. Harrowell
that Ji(kr)=0 was not correct inside the circular waveguide.
Harrowell acknowledged this. Despite the fact that he modified his
impedances, a discrepancy still exists.
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In the approximate method used in this paper Kihara’s
trial fields are used to obtain the expression for the
impedances.

ToE IMPEDANCE IN WAVEGUIDE
The impedances in a waveguide are arbitrarily de-

fined as,?

2w Vv

Vv*
2 ZWI = 3 ZVT = 7

2w Ir*

Zyy =

for sinusoidal fields, where * as superscript indicates the
complex conjugate. V is the maximum voltage across
the waveguide, [ is the total axial current and W is the
power flowing down the waveguide.

The impedances obtained by these expressions are all
different.

TaE ExAcT IMPEDANCE

The exact impedance is obtained by using the exact
fields in the elliptical pipe. The fields components of an
H wave in an orthonormal system u1, #s, #;3 of coordi-
nates can be expressed as®

_ 62H* I azH*
EIZ——H d)EQZ-— g;E3=O,
hy 010Uy i 8t0uy
1 9HI* 1 9Is* )
H =—  —— Hy=— v Hy = (k% — B)II*,
Jip 3iduy ho 0201

where

II.* = the magnetic Hertz vector in the direction #s,
w=permeability of the medium,
k=free space propagation constant,

w\/I-_L-O:O = 27‘-/)\(%
B8 =waveguide propagation constant 2w /\,,

and %y and ks are the metric coefficients of the respective
coordinates.
In elliptical coordinates,

Il

x = g cosh # cos v,

y = ¢ sinh # sin v, and
3 =5

where ¢ is the semifocal distance; # and v are the radial
and angular variables, respectively.

The magnetic Hertz vector must satisfy the wave
equation. In elliptical boundaries the magnetic Hertz
vector satisfies the wave equation if it is expressed as
a function of Mathieu functions. For the fundamental
mode (.H; mode),

5S. A. Schelkunoff, “Impedance concept in waveguides,” Quart.
of Appl. Math., vol. 2, pp. 1-15; April, 1944,

8 J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co., Inc., New York, N. Y., p. 351; 1941.
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I* = — Jei(u)Ser(v)

(& — 8%

where

= )]
Sex(®) = 3. Degusry cos (2k + 1)o,
k=0 )

k=0

? w0
Jé’l(it) = /‘//7 Z Deié;)c+1)]2k+1(h COSh 1L)

and the coefficients De&lﬂ) can be found in National
Bureau of Standards’ tables.”

B is a constant, Se;(v) is an even Matheiu function,
Jey(u) is an even modified Matheiu function of the first
kind, and the Mathieu functions have h=g(k*—3%)12
as a parameter.

Assuming an e*@*#2 dependence, the field compo-
nents in elliptical coordinates are

Ei= — B—— Jey(u)Ser(v),
q:(k* — B?)
E, =B e Jei' (1)Se1(v),
0k — 5
E., =0,
H,=— B _15__ Jei' (u)Sei(v),
qi(k* — 8%
H, = — B w5 Jei(u)Ser' (v),
and
H, = BJe;(u)Sei(r)
where

q1 = g(sinh? » 4+ sin® )1/2

and the prime denotes the derivative with respect to
i Or v.

For readers who desire to know more about Mathieu
functions and their derivatives, papers by Wiltse and
King?®?® are very appropriate.

A. The Voliage

Schelkunoff'® showed that the maximum voltage
across a circular waveguide can be obtained from the
longitudinal component of the magnetic field.

7 National Bureau of Standards, “Tables Relating to Mathieu
Functions,” Columbia University Press, New York, N. Y.; 1951,

. 21, C. Wiltse and M. ], King, “Values of the Mathieu Func-
tions,” The Johns Hopkins Rad. Lab., Baltimore, Md., Tech. Rept.
AF-53; August, 1958.

M. J. King and J. C. Wiltse, “Derivatives, Zeros, and Other
Data Pertaining to Mathieu Functions,” The Johns Hopkins Rad.
Lab., Baltimore, Md., Tech. Rept. AF-57; December, 1958.

10°S. A. Schelkunoff, “Electromagnetic Waves,” ID. Van Nostrand
Co., Inuc., Princeton, N. J., p. 324; 1943.
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In elliptical coordinates, the maximum voltage across
the waveguide can also be obtained from the longitudi-
nal magnetic field:

dopH (1, v) = iop(k?* — 67)IL

iwu @ foIL* d /ol *
(=) e -
g2 Léu \ du dv \ 9dv

I

substituting
(?Hz* QLEu GH:* Q1E@
= ——— and —— = =
av — 1w du A

into H,, and then integrating, it can be easily shown
that

uo /2 uo
V= iw,uf f H.(u, v)dsidsy = 2f E, <u1, )dsl
0 —T/2 0

Accordingly,

%0 Tf2
V = iw,uf H.dsdss
0

—7/2
uo
= iwuBg? f f (sinh? 2 - sin®v)J ey () Sei(v)dudvds:dse
3} —/2

dsidss = ¢i*dudv (differential area).

If we let I represent the integral, then the final expres-
sion for the maximum voltage across the waveguide is

V = Biwpg*l,. (1)
B. The Current

If we consider that the elliptical waveguide is in a
position such that the major diameter is horizontal,
the axial current flow is in one direction on the top face
and in the opposite direction in the bottom. Then the
total axial current can be obtained by the integral of
the transverse tangential magnetic field on the upper
half of the elliptical pipe:

I =f H,(uy, v)dss = J(’l(ﬂg)f Sed (v)dv
0

(k* —

and the final expression for the current is
2i8
I = B — Jei(ug) (2)
ko?

where ko2 = (k2—32).

C. The Power

The power flowing down the waveguide is

1
—_ E X H*dr

2 volume

1 uQ 2T
7f f (Equ* - E'qu*)dSldel
0 0

w

I
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and
W= Zko f f [Te2(2)Ser (v)
+ Jei'2(1)Se2(x) |dudy.
Although
27 R © W 2
f Se*(v)de = w 3 [ Degais]
0 h=0
and

2m

561/9(7)>di’ =7 Z (2]6 -+ 1) [1)6(2k+1)]2.

0 k=0

In the paper the values of the Mathieu functions were
obtained directly by integrating the Mathieu equation,
these expressions were not used, and the actual integra-
tion was performed.

If we let the integral be represented by I,, the power is

w,
W = | B|?——I,. 3
| B WL 3)

Now the impedances can be easily obtained. Let
=1207(N\,/N\) and A =q(k*—(%) V2 then

BTy
Zyr = ——"Zg
2
and
z L, (4)
e 4T e (1) o
At the cut off 3=0
27
h=q—

<
and the cut off wavelength is

2mq me.l

i - —Iz
where

e =eccentricity and
A =major diameter of the ellipse.

Numerical Results

The values of the Mathieu functions and their de-
rivatives required for the numerical integrations were
obtained directly by integrating the Mathieu differential
equations by the Univac-1103A computer.

The characteristic values be, were obtained from the
expression be; =a-+5/2, where s=#%% and ¢ is a continued
fraction expansion of s. @ was evaluated by using a rou-
tine available for the IBM 650 computer for each s. For
more details see a paper by Valenzuela and Bitterli.!!

1L G. R. Valenzuela and C. V. Bitterli, “Tables of Even and Even
Modified Mathieu Functions of Order One of the First Kind and
Their Derivatives,” The Johns Hopkins University Appl. Phys. Lab.,
Silver Spring, Md., Rept. No. APL-CM-966; November, 1959.
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TABLE I
B/A ¢ =eccentricity S=hn U I Iz Jer(ug)
1.0000 0.0 0.0 © 0 2.000 0.7300
0.92367 0.3821 0.50 1.6135400 3.8394620 1.9616937 0.7420
0.8415 0.540 1.00 1.2263444 1.8158124 1.9072496 0.7560
0.7517 0.660 1.50 0.97686012 1.1244031 1.8232323 0.7720
0.6512 0.759 2.00 0.77738676 0.76092589 1.6947832 0.7890
0.5348 0.845 2.50 0.59694283 0.52235541 1.4991724 0.8067
0.3862 0.924 3.00 0.40732370 0.32811390 1.1679826 0.8255
0.1181 0.993 3.50 0.11873645 0.089946928 0.38690746 0.8455
0.0 1.000 ) 0.0 0.0 0.0 %
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to-major diameter ratio.

Fig. 4—Cutoff wavelength per major diameter
vs minor-to-major axis ratio.
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The integration of the Mathieu functions were per-
formed using the Gaussian Quadratures method, sixteen
points. The lowest root of the radial Mathieu functions
were obtained by using the Univac-1103A.

The axial ratio corresponding to each % can be found
from

tanh #, = Z and ¢ = +/1 — tanh? u,.

Note that all the quantities can be obtained from the
parameter 4. Hence the normalized impedances are
only functions of this parameter.

Numerical results obtained by the computer are
given in Table I.

THE APPROXIMATE IMPEDANCE

The approximate impedance was obtained using
Kihara’s approximate field components

E, = 2xy, .
%2

E, = (2¢® + 0% (1 — ~> - 2
a

2

major diameter 4 =2¢ and minor diameter B=2b.
These approximate fields do satisfy the boundary con-
ditions.

Now we proceed to calculate the maximum voltage,
total axial current and the power flowing in the elliptical
waveguide using the approximate fields.

A. The Voltage

The maximum voltage across the waveguide is

b
2f E,dy
0 z=0
b 22
Zf |:(2¢12 + 8% (1 — —9) — y{l dy
0 a”

performing the integration and the voltage is

vV

z=0

V= % (3% + b9). (5)

B. The Current

The total axial current flowing can be obtained from
b 20
I = zf f Htandxdy Xy = d(l - y2/b2)1/2,
[} 0

and the expression for the current is

1—4(23+b2)~1- 6
—?a a 7 (6)

0
C. The Power

The power flowing down the pipe is

2 b 20
W= —f f (E.2 + E2)dxdy
ZO 0 0
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and the power is
ks
W = 57, (15a% + 11a%b* + 2ab%). )
The expression for the approximate impedances are
_327QB+ )
LA
3r (15 + 1172 4 2¢%)
wI = — (8)
32 (2 4 r2)2
and
347
PR )
2+
where
b
y o= —
a

In Figs. 1, 2 and 3 the exact and approximate imped-
ances have been plotted for comparison. The exact cut-
off wavelength and Kihara's approximate cutoff wave-
length have been shown in Fig. 4.

Kihara obtained the propagation constant for the
fundamental mode in elliptic waveguide using his trial
fields, and his first approximation is correct to within
one per cent:

TG+
6 G+

Although Chu had already presented the cutoff
wavelength for this mode, we present it here once more
in a form easier to use. Chu in his paper plotted N\./s
against eccentricities, where s is the circumference of
the elliptical waveguide.

AM=mAd

CONCLUSION

The exact values of the impedances are presented
numerically and graphically. Expressions for the im-
pedance of an elliptical waveguide are given. The im-
pedance is obtained within six per cent of the exact
value using the approximate results. Comparison of the
curves indicates that expressions (8) can give the im-
pedances of elliptical waveguide within three per cent
of the exact values by scaling them by a factor of 1.03.

ACKNOWLEDGMENT

The author would like to thank T. Ap-Rhys for his
very helpful suggestions.

Acknowledgment is also due to C. V. Bitterli, Proj-
ect Supervisor of the Applied Physics Lab. Computing
Center, for directing the evaluation of the integrals in-
volving the Mathieu functions.



