
1960 Valenzuela: Impedances of an Elliptic Waveguide [For the .H1 ModeJ 431

1111]

[112]

1113]

1114]

[115]

1116]

1117]

1118]

1119]

G. D. Speake, “Problems in protection of radar receivers, ”
Electronic Engrg., vol. 29, p. 313; 1957.
G. W. Stuart and P. Rosen, “A cylindrical ca~-ity filled with a
d.c. discharge, ” J. Appl. Phys., vol. 22, p. 236; 1951.
R. F. Sullivan and R. C. LeCraw, ‘[New type of ferrite micro-
wave switch, ” J. Appl. Phys., vol. 26, p. 1282; 1955.
J. tV. Sutherland, “Waveguide hybrid circuits and their use
in radar systems, ” Electronic Engrg., vol. 28, p. 464; 1956.
J. W. Sutherland, ‘(Waveguide switches and branching net-
works, ” Electronic E?zg~g., vol. 31, p. 64; 1959.
S. J. Tetenbaum and R. M. Hill, “High-power broadband,
microwave gas discharge switch-tube, ” 1958 1RE NATIONAL

CONVENTION RECORD, pt. 1, p. 83.
S. J. Tetenbaum and R. M. Hill, “High power, magnetic field
controlled microwave gas discharge switches, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-7, pp.
73-82; January, 1959.
L. Tourel. P. Tcheditch. M. Lamv. and P. Vincent, “W’ave-
guide switching device using ga~-filled tubes, ” A%zales de
Radioelectricite, vol. 9, p. 163; 1954.
J. S. Townsend, “Electricity in Gases, ” Clarendon Press, Ox-
~1$~ Eng., 1915; Hutchinson and Co., Ltd., London, Eng.,

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

J. S. Townsend and E. W. B. Gill, “Generalization of the theory
of electrical discharges, ” Phil. Mug., vol. 26, p. 290; 1938.
M. A. Treuhaft and L. M. Silber, “Use of microwave ferrite
toroids to eliminate external magnets and reduce switching
power, ” PROC. IRE, vol. 46, p. 1538; August, 1958.
E. H. Turner, “A fast ferrite switch for use at 70 kmc, ”
IRE TRANS. ON MICROWAVE THEOKY AND TECHNIQUES, vol.
MTT-6, pp. 300–303 ; IUIY, 1958.
B. T. Ud&on. T. E. Creedon and T. C. French. “Microwa~,e
me~surements’ ~f the properties of ~ d. c. hydrogen discharge, ”
J. Ap@. Phys., VOI. 28, p. 717; 1957.
G. S. Uebele, “High-speed, ferrite microwave switch, ” 1957
IRE NATIONAL CoNvmmoN RECORD, pt. 1, pp. 227-234.
D. Walsh, ‘{The electron affinity of hydrogen in a microwave
gas discharge, ” J. Electronics, vol. 1, p. 444; 1956.
D. IValsh, A, W. Bright and T. J. Bridges, “Electrode de-
terioration in ‘keep-alive’ discharges In tl-ansmit. receive
switches, ” Brit. J. Appl. Phys., vol. 7, p. 31; 1956.
L. Young, “A hybrid-ring method of simulating higher powers
than are available in waveguides, ” Proc. IEE, vol. 101, pt. B, p.
189; 1954.
Brit. Patent No. 716,372; vol. December 21, 1950.

Impedances of an Elliptic Waveguide

(For the &, Mode)*

G. R. VALENZUELA~, MEMBER, IRE

Summary—The power-voltage, power-current and voltage-cur-

rent impedances for the elliptical waveguide for the fundamental

mode (, HI mode) are obtained by two different methods.
The first method consists of using the exact fields inside a per-

fectly conducting elliptical pipe. Numerical results were obtained by
numerical integration of the integrals involving Mathieu functions
by the Gaussian Quadrature method by a digital computer.

In the second method approximate fields which satisfy the bound-

ary conditions were used. By this approximate method, actual ex-
pressions for the impedances are obtained as a function of minor to
major diameter ratio with no need of numerical integration.

The actual expressions for the impedance obtained by the ap-

proximate method give the impedance for elliptical waveguide within

six per cent. On the basis of comparison with the exact numerical

solution the expressions for the approximate impedance give the

impedance of elliptical waveguide within three per cent if they are

scaled by 1.o3.

INTRODUCTION

c

HUl in 1938 obtained numerical results for the

exact cutoff wavelength for several modes in el-

liptical waveguides. He also obtained numerical

results for the attenuation in elliptical waveguide.

* Received by the PGMTT, January 15, 1960; revised manuscript
received, March 31, 1960. This research was supported by the U. S.
Air Force through the Wright .4ir Dev. Div. of the Air Res. and Dev.
Command. The early work reported herein was supported by the
Dept. of the ATavy, Bureau of Ordnance, at the Applied Physics
Lab., The Johns Hopkins LTniversity.

~ The Johns Hopkins Radiation Lab., Baltimore, Md.
1 L. J. Chu, “Electromagnetic waves in elliptic hollow pipes of

metal, ” J. Appl. Phys., vol. 9, pp. 583-591; September, 1938.

Kihara~ published a paper in 1947 using the varia-

tional method to determine the propagation constant

of hollow pipes and cavities. Kihara was able to obtain

the propagation constant of an elliptical waveguide

within one per cent, in the first approximation, using

trial fields.

In 1958 Harrowe113 obtained the impedance of ellip-

tical waveguide by using an approximate method. He

showed that the magnetic field lines inside a circular

waveguide were approximately ellipses. Therefore, he

was able to introduce conducting ellipses without dis-

turbing the fields. Harrowell did not mention within

what degree of accuracy his impedances would com-

pare with the exact value.

Harrowell’s voltage-current impedance agrees per-

fectly with our exact impedance, but his impedances in-

volving power differ from our exact values; this differ-

ence is greater for eccentricities close to unity.4

‘ T. Kihara. “ADDrOXhllate methods ret?ardimz electromametic
waves in hollow pi~e~ and cavities, ” P}tys.-Sor. ~apan, vol. ~, pp.
6.$–70 : 1947.-v.......

s R. V. Harrowell, “An approximate theory for determining the
characteristic impedance of elliptic waveguides, ” J. of Electronics
and Control, vol. 5, pp. 289–299; October, 1958.

~ In private co.respondellce we pointed out to R. Il. Harrowell
that J1’ (kr) = O was not correct inside the circular waveguide.
Harrowell acknowledged this. Despite the fact that he modified his
impedances. a discreDaucv still exists.
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In the approximate method used in this paper Kihara’s

trial fields are used to obtain the expression for the

impedances.

THE IMP~DANCE IN WAVEGUIDE

The impedances in a waveguide are arbitrarily de-

fined as,5

for sinusoidal fields, where * as superscript indicates the

complex conjugate. V is the maximum voltage across

the waveguide, I is the total axial current and W is the

power flowing down the waveguide.

The impedances obtained by these expressions are all

different.

THE EX.\CT IMPED.INCE

The exact impedance is obtained by using the exact

fields in the elliptical pipe. The fields components of an

I+ wave in an orthonormal system ZL1,uj, ZL3of coordi-

nates can be expressed as6

–/.4 c3m3*
El=—

p &rf3*
—) Ez=— —> E3 =0,

1!2 dtdf’bz Ill tmul

1 dTf3* 1 dm3*
Hi=—–——, Hz=— — , H3 = (k’ – p’)rr3*,

kI dtdul kt dzdw!

where

113* = the magnetic Hertz vector in the direction ZL3,

P = permeability of the medium,

k = free space propagation constant,

/3= waveguide propagation constant 2~/A,,

and hl and k~ are the metric coefficients of the respective

coordinates.

In elliptical coordinates,

>: = q cosh u COSV,
y = q sinh u sin z, and

where q is the semifocal distance; u and v are the radial

and angular variables, respectively.

The magnetic Hertz vector must satisfy the wave

equation. In elliptical boundaries the magnetic Hertz

vector satisfies the wave equation if it is expressed as

a function of Mathieu functions. For the fundamental

mode (,FII mode),

5 S. A. Schelkunoff, “Impedance concept in waveguides, ” Quurt.

of Af@. Math., vol. 2, pp. 1–15; April, 1944.
f J. A. Stratton, ‘(Electromagnetic Theory, ” i?lcGraw-Hill Book

Co., Inc., New York, N. Y., p. 351; 1941.

and the coefficients De[~~+,) can be found in National

Bureau of Standards’ tables.7

B is a constant, SeI(v) is an even Matheiu function,

-lel(u) is an even modified Matheiu function of the first

kind, and the Mathieu functions have h = q(kz –,f?:) lia

as a parameter.

Assuming an e7@-@) dependence, the field compo-

nents in elliptical coordinates are

kJ!.4
E,, =–B Je,(u)Sel’ (v),

q,(k.’ – p)

and

where

E, =

E, =

H. =

H, =

iw,u
B ——— Jel’(z~)Sel(v),

ql(k’ – @’)

o,

@
–B — Jel’(u)Se,(v),

q,(k’ – @’)

B.Tel(u)Se,(v)

q(sinhz u + sinp V)112

denotes the derivative with respect toand the prime

u or v.

For readers who desire to know more about Mathieu

functions and their derivatives, papers by Wiltse and

Kings ‘g are very appropriate.

A. Tke Voltage

SchelkunofPO showed that the maximum voltage

across a circular waveguide can be obtained from the

longitudinal component of the magnetic field.

7 ~Tational Bureau Of standards, “Tables Relating to Mathieu
Functions, ” Columbia Uni~-ersity Press, New York, N. 1-:; 1951.

8 J. C. Wiltse and M. J. King, “Values of the Mathleu Func-
tions, ” The Johns Hopklrrs Rad. Lab., Baltimore, Md., Tech. Rept.
AF-53: Aum,st. 1958.,.–

9 M. J.”,K@g and J. C. R’iltse, “Deri~-ati\,es, Zeros, and Other
Data Pertalmng to h~athleu Functions, ” The Johns HOp~ikls Rad,
Lab., Baltimore, Md., Tech. Rept. AF-57; December, 1958.

10S. A. Schelkunoff, “Electromagnetic \Vaves, ” D. Van Nostrand
Co., Inc., Princeton, N. J., p. 324; 1943.
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In elliptical coordinates, the maximum voltage across

the waveguide can also be obtained from the longitudi-

nal magnetic field:

‘@@z(u) 1) = i@@ — @~)rI.*

‘%[3%)+:(%)1
substituting

dII,* qlE. (XI,* qlzl,>
—

and —— == —

ill – —io+a I?’u ico~

into H., and then integrating, it can be easily shown

that

.0Ss7r/2

v = iw,a
o —?r\2

H=(,,,,,(i.,(is,== zsuuo~u(t+dx,.

Accordingly,

UoM 7T/2
v = iwp HZdslds~

o —rl~

UoSs7r/2=icopBqz (sinh’ u + sin’ t)Jel(ti)Se,(v)dfdvdsIds,
o —=,i~

dslds~ = qlgdudv (differential area).

If we let 11 represent the integral, then the final expres-

sion for the maximum voltage across the waveguide is

V = Bi~pq21,. (1)

B. Tkc Cu~~ent

If we consider that the elliptical waveguide is in a

position such that the major diameter is horizontal,

the axial current flow is in one direction on the top face

and in the opposite direction in the bottom. Then the

total axial current can be obtained by the integral of

the transverse tangential magnetic field on the upper

half of the elliptical pipe:

ST –Bi@

s

T

I= H.(tL”, V)dsz = —— Jc, (uo)
(k’ – ~’)

Sel’(v)dv
o 0

and the final expression for the current is

(2)

where ko2 = (k2–~2).

C. Tke Power

The power flowing down the waveguide is

w=+s E ~ H*dr
volume

1 .0‘T—--ss (EZ,HV* –
2“0

433

+ Je,’’(u)Sel’(z)] dtidv.

Although

and

s2T m
Sel’z(v)dv = zr ~ (2k + l)2[De~~~+l)]2.

o h=O
In the paper the values of the h~athieu functions were

obtained directly by integrating the Mathieu equation,

these expressions were not used, and the actual integra-

tion was performed.

If we let the integral be represented by 12, the power is

(3)

Now the impedances can be easily obtained. Let

2.= 1207r(Ac/h) and lz=q(kg~@z)l/2, then

and

At the cut off ~ = O

k=q;
c

and the cut off wavelength is

2n-q 7WA1

where

e = eccentricity and

A = major diameter of the ellipse.

Numerical Results

(4)

The values of the lMathieu functions, and their de-

rivatives required for the numerical integrations were

obtained directly by integrating the hlathieu differential

equations by the Univac-1 103A computer.

The characteristic values bel were obtained from the

expression bel ==a+s/2, where s = h~ and a is a continued

fraction expansion of s. a was evaluated by using a rou-

tine available for the IBhf 650 computer for each s. For

more details see a paper by Valenzuela and 13itterli. 11

u G, R. Valellzuela and C. V. BitterIi, ‘{Tables of Even and Even

NIodified Mathieu Functions of order C)ne of the First Kind and
Their Derivatives, ” The Johas Hopkins University Appl. Phys. Lab.,
Silver Spring, Md., Rept. No. APL-CM-966; No,,ember, 1959.
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1.0000
0.92367
0.8415
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0.6512
0.5348
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0.1181
0.0

‘“r
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e = eccentricity

0.0
0.3821
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0.845
0.924
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1.000
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TABLE I
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0.0
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Fig. l—Power-current impedance vs minor-
to-major diameter ratio.

2.2 —

2.0 —
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I,

m

3.8394620
1.8158124
1.1244031
0.76092589
0.52235541
0.32811390
0.089946928
0.0

2.000
1.9616937
1.9072496
1.8232323
1.6947832
1.4991724
1.1679826
0.38690746
0.0

July

Jq (z@

0.7300

0.7420
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0.7720
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Fig. 3—Voltage-current impedance vs minor-
to-major diameter ratio.

1.70 —

1.6S —

1.66 —

A
c/A

1.67 —

I.66
B = MINOR AXIS

.~~
A= MAJOR AXIS

,.6,~
o 0.20 0.40 0.60 0.60 1,0

‘/A

Fig. 2—Power-voltage impedance vs minor-
to-major diameter ratio.

Fig. 4—Cutoff wavelength per major diameter
vs minor-to-major axis ratio.
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The integration of the Mathieu functions were per-

formed using the Gaussian Quadrature method, sixteen

points. The lowest root of the radial Mathieu functions

were obtained by using the Univac-1103A,

The axial ratio corresponding to each h can be found

from

B
tanh U. = ~ and e = v’1 — tanhz z~O.

Note that all the quantities can be obtained from the

parameter h. IHence the normalized impedances are

only functions of this parameter.

Numerical results obtained by the computer are

given in Table 1.

THE APPROXIMATE IMPEDANCE

The approximate impedance was obtained using

Kihara’s approximate field components

.% = 2xy,

()
EU=(2a’+ b’) l–~ –y’

major diameter A = 2a and minor diameter B = 2b.

These approximate fields do satisfy the boundary con-

ditions.

Now we proceed to calculate the maximum voltage,

total axial current and the power flowing in the elliptical

waveguide using the approximate fields.

A. The Voltage

The maximum voltage across the waveguide is

sbV=2 EUdy
o *=0

= 2Job[(2a,+b,(l- ;)- Y2]dylz=o

performing the integration and the voltage is

V = ~ (3a’b + b’). (5)

B. The Current

The total axial current flowing can be obtained frombSsXo
1=2 Hh..dxdy X. = a(l — yg/b2)1f~,

00

and the expression for the current is

I=$(2a8+ab2)~.
Zo

(6)

C. The Power

The power flowing down the pipe isbw=?Ss‘“(EJ + EU2)dxdy
2000

and the power is

w = & (15a’b + lla’b’ + ‘i!ab’).

The expression for the approximate impedances are

32 ?(3 + r’)
ZJVJ7= — Z(J,

37r (5 + 2?”)
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37r 7(15 + ll?’~ + 2?’4)
ZW = ~

(2 + ?“)’ ‘z

and

Zv, = ‘r‘3+ ‘2)Zo
(2+ Y’)

where

b
y=—.

a

(7)

(8)

In Figs. 1, 2 and 3 the exact and approximate imped-

ances have been plotted for comparison. The exact cut-

off wavelength and Kihara’s approximate cutoff wave-

length have been shown in Fig. 4.

Kihara obtained the propagation constant for the

fundamental mode in elliptic waveguide using his trial

fields, and his first approximation is correct to within

one per cent:

‘41 (5 + 2r2)
h,=rA —

6 (3+72)”

Although Chu had already presented the cutoff

wavelength for this mode, we present it here once more

in a form easier to use. Chu in his paper plottecl A,/s

against eccentricities, where s is the circumference of

the elliptical waveguide.

CONCLUSION

The exact values of the impedances are presented

numerically and graphically. Expressions for the im-

pedance of an elliptical waveguide are given. The im-

pedance is obtained within six per cent of the exact

value using the approximate results. Comparison of the

curves indicates that expressions (8) cam give the im-

pedances of elliptical waveguide within three per cent

of the exact values by scaling them by al factor of 1.03.
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